Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Virology ; 593: 110017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382161

RESUMO

Bacteriophage Mu is a temperate phage known to infect various species of Enterobacteria, playing a role in bacterial mutation induction and horizontal gene transfer. The phage possesses two types of tail fibers important for host recognition, which enable it to expand its range of hosts. The alternate tail fibers are formed through the action of genes 49-50 or 52-51, allowing the Mu phage to recognize different surfaces of host cells. In a previous study, we presented the X-ray crystal structure of the C-terminal lipopolysaccharide (LPS)-binding domain of gene product (gp) 49, one of the subunits comprising the Mu tail fiber. In this study, we have determined the structure of the alternative tail fiber subunit, gp52, and compared it with other tail fibers. The results revealed that Mu phage employs different structural motifs for two individual tail fibers for recognizing different hosts.


Assuntos
Bacteriófago mu , Bacteriófagos , Bacteriófago mu/química , Bacteriófago mu/genética , Bacteriófagos/genética , Proteínas da Cauda Viral/genética
2.
PLoS Biol ; 21(12): e3002441, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096144

RESUMO

Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ligação Proteica , Proteínas do Capsídeo/metabolismo , DNA/metabolismo , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo
3.
J Mol Biol ; 435(24): 168365, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952769

RESUMO

Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by ∼6° relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted ß-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.


Assuntos
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Bacteriófago P22/química , Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Salmonella typhimurium/virologia , Proteínas da Cauda Viral/genética
4.
J Mol Biol ; 434(21): 167829, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116540

RESUMO

Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.


Assuntos
Bacteriófago P1 , Escherichia coli , Antígenos O , Shigella flexneri , Transdução Genética , Proteínas da Cauda Viral , Escherichia coli/genética , Escherichia coli/virologia , Antígenos O/genética , Antígenos O/fisiologia , Shigella flexneri/genética , Shigella flexneri/virologia , Bacteriófago P1/genética , Bacteriófago P1/fisiologia , Proteínas da Cauda Viral/genética
5.
J Virol ; 96(16): e0092922, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35894604

RESUMO

The first critical step in a virus's infection cycle is attachment to its host. This interaction is precise enough to ensure the virus will be able to productively infect the cell, but some flexibility can be beneficial to enable coevolution and host range switching or expansion. Bacteriophage Sf6 utilizes a two-step process to recognize and attach to its host Shigella flexneri. Sf6 first recognizes the lipopolysaccharide (LPS) of S. flexneri and then binds outer membrane protein (Omp) A or OmpC. This phage infects serotype Y strains but can also form small, turbid plaques on serotype 2a2; turbid plaques appear translucent rather than transparent, indicating greater survival of bacteria. Reduced plating efficiency further suggested inefficient infection. To examine the interactions between Sf6 and this alternate host, phages were experimentally evolved using mixed populations of S. flexneri serotypes Y and 2a2. The recovered mutants could infect serotype 2a2 with greater efficiency than the ancestral Sf6, forming clear plaques on both serotypes. All mutations mapped to two distinct regions of the receptor-binding tailspike protein: (i) adjacent to the LPS binding site near the N terminus; and (ii) at the distal, C-terminal tip of the protein. Although we anticipated interactions between the Sf6 tailspike and 2a2 O-antigen to be weak, LPS of this serotype appears to inhibit infection through strong binding of particles, effectively removing them from the environment. The mutations of the evolved strains reduce the inhibitory effect by either reducing electrostatic interactions with the O-antigen or increasing reliance on the Omp secondary receptors. IMPORTANCE Viruses depend on host cells to propagate themselves. In mixed populations and communities of host cells, finding these susceptible host cells may have to be balanced with avoiding nonhost cells. Alternatively, being able to infect new cell types can increase the fitness of the virus. Many bacterial viruses use a two-step process to identify their hosts, binding first to an LPS receptor and then to a host protein. For Shigella virus Sf6, the tailspike protein was previously known to bind the LPS receptor. Genetic data from this work imply the tailspike also binds to the protein receptor. By experimentally evolving Sf6, we also show that point mutations in this protein can dramatically affect the binding of one or both receptors. This may provide Sf6 flexibility in identifying host cells and the ability to rapidly alter its host range under selective pressure.


Assuntos
Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Mutação Puntual , Shigella flexneri/virologia , Proteínas da Cauda Viral/genética , Especificidade de Hospedeiro , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Antígenos O/química , Antígenos O/genética , Antígenos O/metabolismo
6.
Virology ; 566: 9-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826709

RESUMO

Tape measure (TM) proteins are essential for the formation of long-tailed phages. TM protein assembly into tails requires the action of tail assembly chaperones (TACs). TACs (e.g. gpG and gpT of E. coli phage lambda) are usually produced in a short (TAC-N) and long form (TAC-NC) with the latter comprised of TAC-N with an additional C-terminal domain (TAC-C). TAC-NC is generally synthesized through a ribosomal frameshifting mechanism. TAC encoding genes have never been identified in the intensively studied Escherichia coli phage T4, or any related phages. Here, we have bioinformatically identified putative TAC encoding genes in diverse T4-like phage genomes. The frameshifting mechanism for producing TAC-NC appears to be conserved in several T4-like phage groups. However, the group including phage T4 itself likely employs a different strategy whereby TAC-N and TAC-NC are encoded by separate genes (26 and 51 in phage T4).


Assuntos
Bacteriófago T4/genética , Escherichia coli/virologia , Genoma Viral , Chaperonas Moleculares/genética , Proteínas da Cauda Viral/química , Vírion/genética , Sequência de Aminoácidos , Bactérias/virologia , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestrutura , Biologia Computacional/métodos , Sequência Conservada , Mudança da Fase de Leitura do Gene Ribossômico , Chaperonas Moleculares/classificação , Chaperonas Moleculares/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas da Cauda Viral/classificação , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/genética
7.
Viruses ; 13(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696524

RESUMO

Phage G is recognized as having a remarkably large genome and capsid size among isolated, propagated phages. Negative stain electron microscopy of the host-phage G interaction reveals tail sheaths that are contracted towards the distal tip and decoupled from the head-neck region. This is different from the typical myophage tail contraction, where the sheath contracts upward, while being linked to the head-neck region. Our cryo-EM structures of the non-contracted and contracted tail sheath show that: (1) The protein fold of the sheath protein is very similar to its counterpart in smaller, contractile phages such as T4 and phi812; (2) Phage G's sheath structure in the non-contracted and contracted states are similar to phage T4's sheath structure. Similarity to other myophages is confirmed by a comparison-based study of the tail sheath's helical symmetry, the sheath protein's evolutionary timetree, and the organization of genes involved in tail morphogenesis. Atypical phase G tail contraction could be due to a missing anchor point at the upper end of the tail sheath that allows the decoupling of the sheath from the head-neck region. Explaining the atypical tail contraction requires further investigation of the phage G sheath anchor points.


Assuntos
Myoviridae/ultraestrutura , Proteínas da Cauda Viral/ultraestrutura , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Myoviridae/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
8.
J Mol Biol ; 433(18): 167112, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34153288

RESUMO

Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.


Assuntos
Bacillus subtilis/virologia , Capsídeo/metabolismo , Genoma Viral , Siphoviridae/fisiologia , Proteínas da Cauda Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Chaperonas Moleculares , Siphoviridae/química , Siphoviridae/genética , Proteínas da Cauda Viral/genética
9.
Viruses ; 13(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070371

RESUMO

Acinetobacter baumannii, one of the most significant nosocomial pathogens, is capable of producing structurally diverse capsular polysaccharides (CPSs) which are the primary receptors for A. baumannii bacteriophages encoding polysaccharide-degrading enzymes. To date, bacterial viruses specifically infecting A. baumannii strains belonging to more than ten various capsular types (K types) were isolated and characterized. In the present study, we investigate the biological properties, genomic organization, and virus-bacterial host interaction strategy of novel myovirus TaPaz isolated on the bacterial lawn of A. baumannii strain with a K47 capsular polysaccharide structure. The phage linear double-stranded DNA genome of 93,703 bp contains 178 open reading frames. Genes encoding two different tailspike depolymerases (TSDs) were identified in the phage genome. Recombinant TSDs were purified and tested against the collection of A. baumannii strains belonging to 56 different K types. One of the TSDs was demonstrated to be a specific glycosidase that cleaves the K47 CPS by the hydrolytic mechanism.


Assuntos
Acinetobacter baumannii/virologia , Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Interações Hospedeiro-Patógeno , Proteínas da Cauda Viral/genética , Bacteriófagos/enzimologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Genoma Viral , Genômica/métodos , Glicosídeo Hidrolases/metabolismo , Especificidade de Hospedeiro , Fases de Leitura Aberta , Filogenia
10.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947754

RESUMO

The high specificity of bacteriophages is driven by their receptor-binding proteins (RBPs). Many Klebsiella bacteriophages target the capsular exopolysaccharide as the receptor and encode RBPs with depolymerase activity. The modular structure of these RBPs with an N-terminal structural module to attach the RBP to the phage tail, and a C-terminal specificity module for exopolysaccharide degradation, supports horizontal transfer as a major evolutionary driver for Klebsiella phage RBPs. We mimicked this natural evolutionary process by the construction of modular RBP chimeras, exchanging N-terminal structural modules and C-terminal specificity modules. All chimeras strictly follow the capsular serotype specificity of the C-terminal module. Transplanting chimeras with a K11 N-terminal structural RBP module in a Klebsiella phage K11 scaffold results in a capsular serotype switch and corresponding host range modification of the synthetic phages, demonstrating that horizontal transfer of C-terminal specificity modules offers Klebsiella phages an evolutionary highway for rapid adaptation to new capsular serotypes.IMPORTANCE The antimicrobial resistance crisis has rekindled interest in bacteriophage therapy. Phages have been studied over a century as therapeutics to treat bacterial infections, but one of the biggest challenges for the use of phages in therapeutic interventions remains their high specificity. In particular, many Klebsiella phages have a narrow spectrum constrained by the high diversity of exopolysaccharide capsules that shield access to the cells. In this work, we have elaborated how Klebsiella phages deal with this high diversity by exchanging building blocks of their receptor-binding proteins.


Assuntos
Bacteriófagos/genética , Klebsiella/virologia , Sorogrupo , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Cápsulas Bacterianas , Bacteriófagos/química , Bacteriófagos/metabolismo , Proteínas de Transporte/metabolismo , Genoma Viral , Ligação Proteica , Proteínas da Cauda Viral/química
11.
ACS Synth Biol ; 10(6): 1292-1299, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33983709

RESUMO

Bacterial transduction particles were critical to early advances in molecular biology and are currently experiencing a resurgence in interest within the diagnostic and therapeutic fields. The difficulty of developing a robust and specific transduction reagent capable of delivering a genetic payload to the diversity of strains constituting a given bacterial species or genus is a major impediment to their expanded utility as commercial products. While recent advances in engineering the reactivity of these reagents have made them more attractive for product development, considerable improvements are still needed. Here, we demonstrate a synthetic biology platform derived from bacteriophage P1 as a chassis to target transduction reagents against four clinically prevalent species within the Enterobacterales order. Bacteriophage P1 requires only a single receptor binding protein to enable attachment and injection into a target bacterium. By engineering and screening particles displaying a diverse array of chimeric receptor binding proteins, we generated a potential transduction reagent for a future rapid phenotypic carbapenem-resistant Enterobacterales diagnostic assay.


Assuntos
Bacteriófago P1/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Enterobacteriaceae/diagnóstico , Engenharia Genética/métodos , Proteínas da Cauda Viral/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Ertapenem/farmacologia , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Biologia Sintética/métodos , Transdução Genética/métodos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
12.
J Bacteriol ; 203(13): e0014121, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875544

RESUMO

ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host range mutants within infant rabbits infected with a mixture of wild-type and OmpU mutant strains. ICP2 host range mutants that can now infect OmpU mutant strains have missense mutations in the putative tail fiber gene gp25 and the putative adhesin gene gp23. Using site-specific mutagenesis, we show that single or double mutations in gp25 are sufficient to generate the host range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to produce a host range mutant phenotype. All ICP2 host range mutants retained the ability to form plaques on wild-type V. cholerae cells. The strength of binding of host range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host range mutants evolve by a two-step process. First, gp25 mutations are selected for their broad host range, albeit accompanied by low-level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near-wild-type efficiencies of adsorption and subsequent phage multiplication. IMPORTANCE Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to renewed interest in phage biology and the potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail that have been shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular coevolutionary arms race presents fitness costs to both ICP2 and V. cholerae.


Assuntos
Bacteriófagos/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Fosfatos de Inositol/metabolismo , Vibrio cholerae/virologia , Proteínas da Cauda Viral/metabolismo , Adesinas Bacterianas , Alelos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Cólera , Interações entre Hospedeiro e Microrganismos/genética , Especificidade de Hospedeiro , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/genética , Modelos Animais , Mutação , Mutação de Sentido Incorreto , Fenótipo , Porinas/química , Porinas/genética , Porinas/metabolismo , Coelhos , Vibrio cholerae/genética , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética
13.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563833

RESUMO

The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.


Assuntos
Bacteriófagos/metabolismo , Mucosa Gástrica/citologia , Trato Gastrointestinal/virologia , Proteoglicanas de Heparan Sulfato/metabolismo , Interações Microbianas , Polissacarídeos/metabolismo , Proteínas da Cauda Viral/metabolismo , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/patogenicidade , Técnicas de Cultura de Células , Escherichia coli/metabolismo , Feminino , Mucosa Gástrica/virologia , Trato Gastrointestinal/fisiologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microbiota , Organoides/citologia , Organoides/virologia , Organismos Livres de Patógenos Específicos , Simbiose , Proteínas da Cauda Viral/genética
14.
Sci Rep ; 11(1): 1467, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446856

RESUMO

Nowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


Assuntos
Bacteriófagos/genética , Especificidade de Hospedeiro/genética , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Clostridioides difficile/genética , Escherichia coli/genética , Humanos , Aprendizado de Máquina , Metagenômica/métodos , Ligação Proteica/genética , Salmonella enterica/genética , Proteínas da Cauda Viral/genética , Vírion/genética
15.
J Biol Chem ; 296: 100286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450228

RESUMO

Pathogenic microorganisms often reside in glycan-based biofilms. Concentration and chain length distribution of these mostly anionic exopolysaccharides (EPS) determine the overall biophysical properties of a biofilm and result in a highly viscous environment. Bacterial communities regulate this biofilm state via intracellular small-molecule signaling to initiate EPS synthesis. Reorganization or degradation of this glycan matrix, however, requires the action of extracellular glycosidases. So far, these were mainly described for bacteriophages that must degrade biofilms for gaining access to host bacteria. The plant pathogen Pantoea stewartii (P. stewartii) encodes the protein WceF within its EPS synthesis cluster. WceF has homologs in various biofilm forming plant pathogens of the Erwinia family. In this work, we show that WceF is a glycosidase active on stewartan, the main P. stewartii EPS biofilm component. WceF has remarkable structural similarity with bacteriophage tailspike proteins (TSPs). Crystal structure analysis showed a native trimer of right-handed parallel ß-helices. Despite its similar fold, WceF lacks the high stability found in bacteriophage TSPs. WceF is a stewartan hydrolase and produces oligosaccharides, corresponding to single stewartan repeat units. However, compared with a stewartan-specific glycan hydrolase of bacteriophage origin, WceF showed lectin-like autoagglutination with stewartan, resulting in notably slower EPS cleavage velocities. This emphasizes that the bacterial enzyme WceF has a role in P. stewartii biofilm glycan matrix reorganization clearly different from that of a bacteriophage exopolysaccharide depolymerase.


Assuntos
Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Glicosídeo Hidrolases/química , Pantoea/enzimologia , Polissacarídeos Bacterianos/química , Proteínas da Cauda Viral/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/química , Bacteriófagos/enzimologia , Sítios de Ligação , Sequência de Carboidratos , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Pantoea/genética , Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo
16.
Virus Res ; 292: 198219, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33137401

RESUMO

crAssphages are a broad group of diverse bacteriophages in the order Caudovirales that have been found to be highly abundant in the human gastrointestinal tract. Despite their high prevalence, we have an incomplete understanding of how crAssphages shape and respond to ecological and evolutionary dynamics in the gut. Here, we report genomes of crAssphages from feces of one South African woman and three infants. Across the complete genome sequences of the South African crAssphages described here, we identify particularly elevated positive selection in RNA polymerase and phage tail protein encoding genes, contrasted against purifying selection, genome-wide. We further validate these findings against a crAssphage genome from previous studies. Together, our results suggest hotspots of selection within crAssphage RNA polymerase and phage tail protein encoding genes are potentially mediated by interactions between crAssphages and their bacterial partners.


Assuntos
Bacteriófagos/isolamento & purificação , Caudovirales/isolamento & purificação , Fezes/virologia , Genoma Viral , Proteínas da Cauda Viral/genética , Adulto , Bacteriófagos/classificação , Bacteriófagos/genética , Caudovirales/classificação , Caudovirales/genética , Feminino , Microbioma Gastrointestinal , Genômica , Humanos , Lactente , Recém-Nascido , Masculino , Filogenia , Adulto Jovem
17.
Viruses ; 12(10)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036277

RESUMO

Bacteriophages (phages), viruses that infect bacteria, are considered to be highly host-specific. To add to the knowledge about the evolution and development of bacteriophage speciation toward its host, we conducted a 21-day experiment with the broad host-range bacteriophage Aquamicrobium phage P14. We incubated the phage, which was previously isolated and enriched with the Alphaproteobacteria Aquamicrobium H14, with the Betaproteobacteria Alcaligenaceae H5. During the experiment, we observed an increase in the phage's predation efficacy towards Alcaligenaceae H5. Furthermore, genome analysis and the comparison of the bacteriophage's whole genome indicated that rather than being scattered evenly along the genome, mutations occur in specific regions. In total, 67% of the mutations with a frequency higher than 30% were located in genes that encode tail proteins, which are essential for host recognition and attachment. As control, we incubated the phage with the Alphaproteobacteria Aquamicrobium H8. In both experiments, most of the mutations appeared in the gene encoding the tail fiber protein. However, mutations in the gene encoding the tail tubular protein B were only observed when the phage was incubated with Alcaligenaceae H5. This highlights the phage's tail as a key player in its adaptation to different hosts. We conclude that mutations in the phage's genome were mainly located in tail-related regions. Further investigation is needed to fully characterize the adaptation mechanisms of the Aquamicrobium phage P14.


Assuntos
Adaptação Biológica/genética , Alcaligenaceae/virologia , Bacteriófagos/genética , Especificidade de Hospedeiro/genética , Phyllobacteriaceae/virologia , Proteínas da Cauda Viral/genética , Sequência de Aminoácidos/genética , Bacteriófagos/fisiologia , Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Mutação/genética
18.
Sci Rep ; 10(1): 15402, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958885

RESUMO

The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.


Assuntos
Bacteriófagos/genética , Escherichia coli O157/genética , Proteínas da Cauda Viral/ultraestrutura , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidade , Domínio Catalítico , Escherichia coli O157/metabolismo , Glicosídeo Hidrolases , Especificidade da Espécie , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion
19.
Int J Biol Macromol ; 164: 4415-4422, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926904

RESUMO

The genome of the thermophilic bacteriophage GVE2 encodes a putative tailspike protein (GVE2 TSP). Here we report the crystal structure of the truncated GVE2 TSP at 2.0-Å resolution lacking 204 amino acid residues at its N-terminus (ΔnGVE2 TSP), possessing a "vase" outline similar to other TSP's structures. However, ΔnGVE2 TSP displays structural characteristics distinct from other TSPs. Despite lacking 204 amino acid residues, the head domain forms an asymmetric trimer compared to symmetric in other TSPs, suggesting that its long N-terminus may be unique to the long-tailed bacteriophages. Furthermore, the α-helix of the neck is 5-7 amino acids longer than that of other TSPs. The most striking feature is that its binding domain consists of a ß-helix with 10 turns, whereas other TSPs have 13 turns, even including the phage Sf6 TSP, which is the closest homologue of GVE2 TSP. The C-terminal structure is also quite different with those of other TSPs. Furthermore, we observed that ΔnGVE2 TSP can slow down growth of its host, demonstrating that this TSP is essential for the phage GVE2 to infect its host. Overall, the structural characteristics suggest that GVE2 TSP may be more primitive than other phage TSPs.


Assuntos
Organismos Aquáticos , Bacteriófagos/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo , Sequência de Aminoácidos , Bacteriófagos/classificação , Bacteriófagos/genética , Clonagem Molecular , Ativação Enzimática , Expressão Gênica , Glicosídeo Hidrolases , Filogenia , Domínios Proteicos , Proteínas Recombinantes , Relação Estrutura-Atividade , Proteínas da Cauda Viral/genética
20.
Curr Opin Virol ; 45: 34-42, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32777752

RESUMO

Bacteriophages, viruses that infect bacteria, are the most abundant biological entities on Earth. Siphophages, accounting for ∼60% of known phages, bear a long, flexible tail that allows host recognition and safe delivery of the DNA from the capsid to the cytoplasm of the infected cell. Independently from their host (Gram positive or Gram negative) and the nature of their receptor at its surface (polysaccharide or protein), the core tail architecture of all caudophages and of bacterial phage-derived contractile injection systems share the same structural organisation and are thought to be homologous. Here, we review the recent advances in the structure, function and assembly of the core tail architecture of siphophages.


Assuntos
Bacteriófagos/química , Bacteriófagos/fisiologia , Proteínas da Cauda Viral/metabolismo , Bacteriófagos/genética , Capsídeo , Genoma Viral , Modelos Moleculares , Conformação Proteica , Proteínas da Cauda Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...